16. Animation principles

Reading

Required:

Recommended:

Character animation

Goal: make characters that move in a convincing way to communicate personality and mood.

Walt Disney developed a number of principles.

Computer graphics animators have adapted them to 3D animation.

Animation Principles

The following are a set of principles to keep in mind:

1. Squash and stretch
2. Staging
3. Timing
4. Anticipation
5. Follow through
6. Overlapping action
7. Secondary action
8. Straight-ahead vs. pose-to-pose vs. blocking
9. Arcs
10. Slow in, slow out
11. Exaggeration
12. Appeal

We will consider each...
Squash and stretch

Squash: flatten an object or character by pressure or by its own power.

Stretch: used to increase the sense of speed and emphasize the squash by contrast.

Note: keep volume constant!

Squash and stretch (cont’d)

![Diagram of squash and stretch](image)

Squash and stretch (cont’d)

![Diagram of squash and stretch](image)

Squash and stretch (cont’d)

The famous half-filled flour sack guide to maintaining volume in any animatable shape, and proof that attitudes can be achieved with the simplest of shapes.

Squash and stretch (cont’d)

![Diagram of squash and stretch](image)
Squash and stretch (cont’d)

Staging

Present the idea so it is unmistakably clear.

Audience can only see one thing at a time.

Useful guide: stage actions in silhouette.

In dialogue, characters face 3/4 towards the camera, not right at each other.

Timing

An action generally consists of anticipation, the action, and the reaction. Don’t dwell too long on any of these.

Timing also reflects the weight of an object:

- light objects move quickly
- heavier objects move more slowly

Timing can completely change the meaning of an action.

Timing (cont’d)

The many meanings of a simple head turn:

- NO inbetweens: hit by a tremendous force.
- ONE inbetween: hit by a brick, frying pan.
- TWO inbetweens: nervous tic, muscle spasm.
- THREE inbetweens: dodging a thrown brick.
- FOUR inbetweens: giving a crisp order (move it!)
- FIVE inbetweens: a more friendly order (c’mon!)
- SIX inbetweens: sees a sportscar he always wanted trying to get a better look...
- SEVEN inbetweens: searching for something on shelf
- EIGHT inbetweens: considering thoughtfully
- NINE inbetweens: stretching a sore muscle
- TEN inbetweens:
Anticipation

An action has three parts: anticipation, action, reaction.

Anatomical motivation: a muscle must extend before it can contract.

Prepares audience for action so they know what to expect.

Directs audience’s attention.

Follow through

Actions seldom come to an abrupt stop.

Physical motivation: inertia

Anticipation (cont’d)

Amount of anticipation (combined with timing) can affect perception of speed or weight.

Follow through (cont’d)
Overlapping and secondary action

Overlapping action

One part initiates ("leads") the move. Others follow in turn.

Hip leads legs, but eyes often lead the head.

Loose parts move slower and drag behind.

Overlaps apply to intentions. Example: settling into the house at night.

- Close the door
- Lock the door
- Take off the coat
- etc...

Each action doesn't come to a complete finish before the next starts.

Secondary action

An action that emphasizes the main point but is secondary to it.

Straight-ahead vs. pose-to-pose vs. blocking

Straight ahead: proceed from frame to frame without planning where you want to be in ten frames. Can be wild, spontaneous.

Pose-to-pose: Define keyframes and "inbetweens".

Blocking: Computer graphics animators adaptation

- Start key-framing at the top of the hierarchy.
- Refine level by level.
- Keyframes for different parts need not happen at the same time.

Arcs

Avoid straight lines since most things in nature move in arcs.

Slow in and slow out

An extreme pose can be emphasized by slowing down as you get to it (and as you leave it).

In practice, many things do not move abruptly but start and stop gradually.
Exaggeration

Get to the heart of the idea and emphasize it so the audience can see it.

Appeal

The character must interest the viewer. It doesn't have to be cute and cuddly.

Design, simplicity, behavior all affect appeal. Example: Luxo, Jr. is made to appear childlike.

FIGURE 11. Varying the scale of different parts of Dad created the child-like proportions of Luxo Jr.

Appeal (cont’d)

Note: avoid perfect symmetries.

Appeal (cont’d)

Note: avoid perfect symmetries.
Current trends in animation

Current trends in animation:
- Geometric modeling and instrumentation
- Realistic rendering
- Physical simulation
- Controllable simulation
- Digital humans

Geometric modeling and instrumentation

Building characters with the right shape and control points is time consuming..

Want the "right" set of controls
- Control points
- Muscle groups
- Blending example expressions
- "Instrumentation" controls

Realistic rendering

Research in rendering materials accurately is ongoing.

Recent progress in Bi-directional Subsurface Scattering Distribution Functions (BSSRDF's) is changing the look of everyday things…and skin.

Realistic rendering (cont’d)

Figure 1: Scattering of light in (a) a BRDF, and (b) a BSSRDF.
Physical simulation

Some effects are too difficult to model by hand (fire, snow, steam, rustling trees, hair, cloth, etc.)

Can do simulation (both physical and non-physical)

- Particle systems
- Fluid flow and turbulence modeling
- Rigid body dynamics
- …

Controllable simulation

Want to have some interactive control.

Example: insert cloth wrinkle here.

- How do you merge this with the physical simulation without starting over?
Digital humans

Making realistic human bodies and faces and animating them is really hard.

Example-based methods using motion capture and scanned shape data hold some promise.

Digital humans: motion capture

Motion capture

- Making a realistic human body motion is hard

Solutions

- Computer vision using raw video footage
 - Typically not accurate enough
- Special sensors that give joint angles and/or positions
 - Wires get in the way
- Cover person with white or retroreflective targets like ping pong balls
 - Have to handle occlusions

Motion processing

- Motion data is often noisy \(\rightarrow\) filter it with smoothing filter.
- Can apply a variety of filters
- “Re-targeting” motion is challenging

Digital humans: facial animation

Future input device: performance driven facial animation

- Animator makes faces
- Video camera watches
- Computer processes in real time
- Character’s face comes to life
- Animators are actors!!