
Adaptive Acceleration Structures in Perspective Space
Warren Hunt∗

University of Texas at Austin
William R. Mark†

Intel Graphics Research
University of Texas at Austin

Figure 1: The Stanford Bunny rendered with depth of field and Fairy Forest rendered with soft-shadows both using a perspective kd-tree.

ABSTRACT

Traversal efficiency of ray tracing acceleration structures can be im-
proved by specializing them, each frame, for the rays that are traced
in that frame. A companion paper to this one demonstrates that ex-
tremely high traversal performance for eye and hard shadow rays
can be obtained by transforming rays and geometry with a perspec-
tive transform, then using a grid acceleration structure in the per-
spective space. However, the performance of this perspective grid
acceleration structure suffers for off-axis rays such as those used
for soft shadows or depth of field. In this paper we address this
shortcoming by exploring the use of the perspective transform with
adaptive acceleration structures such as kd-trees. The problem of
choosing optimal split planes for an acceleration structure is differ-
ent in perspective space than it is in world space, so we introduce a
new cost metric for estimating traversal cost of acceleration struc-
tures in perspective space. This metric is related to the traditional
surface area metric but defined in perspective space. We imple-
ment a ray-tracing system with both traditional and perspective ac-
celeration structures and demonstrate significant performance im-
provements using the perspective space structures even when build
time is included. Additionally we evaluate the effectiveness of our
new cost metric compared to traditional cost metrics. A key insight
demonstrated by these results is that end-to-end rendering perfor-
mance can be improved by building a different specialized accel-
eration structure for each light and camera in the scene instead of
using a single non-specialized acceleration structure for all rays.

Index Terms: I.3.7 [Computing Methodologies]: COMPUTER
GRAPHICS—Three-Dimensional Graphics and Realism

1 INTRODUCTION

Ongoing advances in graphics hardware will soon provide enough
computing power to make ray-tracing a viable rendering solution
for interactive and real-time applications. However, algorithmic
advances will also be required to make ray-tracing competitive in
performance with alternative approaches.

∗e-mail:whunt@cs.utexas.edu
†e-mail:billmark@cs.utexas.edu

A companion paper to this one introduces the perspective trans-
form for ray-tracing acceleration structures and introduces a new
acceleration structure, the perspective transformed uniform grid [6].
This transform aligns rays closely to the spatial axes and provides
high traversal performance for eye and shadow rays. Although this
acceleration structure is extremely fast to build, its traversal perfor-
mance suffers significantly when used to trace off-axis rays, such as
those required for soft shadows and depth-of-field effects. The goal
of this paper is to extend the performance benefits of perspective
transformed acceleration structures to these off-axis rays.

Our experimentation has shown that the performance degrada-
tion for off-axis rays is primarily due to the well-known inability
of a uniform acceleration structure to adapt to the scene geometry.
Adaptive acceleration structures such as bsp-trees and BVHs are
known to address these issues [11]. In this paper, we extend the
idea of tracing rays in perspective transformed space to adaptive
acceleration structures, and in particular to kd-trees. To support
this change, we will define a new metric for estimating traversal
cost during acceleration-structure build. This new cost metric is
designed for perspective space acceleration structures and incorpo-
rates more accurate assumptions about the origins and directions of
rays. We provide results comparing the execution time and algo-
rithmic operation counts of perspective kd-trees with those of tradi-
tional world-space kd-trees. These results show that the perspective
kd-tree performs better than a perspective grid or a regular kd-tree
for soft shadow and depth-of-field eye rays. For shadow and depth
of field images, the improvement is a 24%-41% reduction in total
time to image as compared to a regular kd-tree built using a scan-
based fast build.

Although adaptive acceleration structures are more costly to
build than uniform acceleration structures, this additional cost can
be justified when tracing large numbers of rays, as is the case for
soft shadow and depth of field effects. For example, using mod-
ern build techniques the Razor [2] and Manta [1] ray tracers use a
very small fraction of overall runtime building acceleration struc-
tures. Offline ray-tracers typically use even a smaller fraction of
time building acceleration structures. This implies that more com-
plicated but more efficient (from a traversal point of view) accel-
eration structures could provide overall performance gains. A key
insight demonstrated by this paper is that it can be adventageous
to build an acceleration structure for each light and camera, every
frame, even for complicated adaptive acceleration structures such

as surface area heuristic based kd-trees.

2 BACKGROUND: THE SAM
Adaptive acceleration structures are built top-down using a recur-
sive partitioning scheme [11]. In the case of kd-trees a (parent)
voxel is partitioned using a split plane into two (child) voxels which
are then left as leaves or recursively subdivided. The recursion ter-
minates when a heuristic determines that further partitioning will
no longer provide any benefit. In the case of a BVH, objects in a
(parent) bounding box are partitioned into two collections which are
then bounded by (child) bounding boxes. This process terminates
when a box only contains one object. We will generically refer to a
kd-tree voxel or a bounding box in a BVH as a node.

The effectiveness of an adaptive acceleration structure hinges
greatly upon the quality of the heuristic used to choose partitions.
Simple heuristics or poor cost metrics that choose bad partitions
can produce acceleration structures that provide significantly poorer
performance for ray-tracing. A classic example of a simple partition
heuristic is the spatial mean split heuristic, which always partitions
a kd-tree voxel in half. This heuristic produces usable accelera-
tion structures quickly, but they are often several times less efficient
than more carefully constructed structures. Given the classic mo-
tivation that acceleration structure build was a pre-processing step
and essentially free, more advanced heuristics have been developed
to improve ray-tracing performance.

The most common cost metric for building high quality accel-
eration structures is known as the surface area metric (or SAM)
[3, 9, 5]. The SAM estimates the expected cost of traversing a ray
through an acceleration structure or sub-structure. This metric can
be used to evaluate the potential effectiveness of many different
partitions in order to choose the best one. The process of building
acceleration structures greedily using the SAM is known as using
the surface area heuristic (or SAH). This heuristic produces accel-
eration structures that are significantly more efficient than simple
heuristics such as the median spatial split heuristic [11]. Addition-
ally, the SAM provides an automatic way to terminate the recursion
during the build process. Build can be terminated when the cost
(according to the SAM) of traversing a partitioned node is greater
than the cost of traversing the non-partitioned node.

The SAM estimates the cost of traversing a partition by estimat-
ing the cost of each child in the partition and then scaling those
costs by the conditional probability that a ray strikes each child.
The cost of the children is estimated simply by the number of ob-
jects that fall into that partition. The conditional probability of in-
tersecting a child is estimated by assuming a uniform distribution
of ray-directions and computing the ratio of child surface area to
parent surface area. Neither of these assumptions usually very ac-
curate but the heuristic is simple to evaluate and works reasonably
well in most cases. For reference, we provide the metric here.

costtraversal = cnode + ∑
children

Pchild ∗Cchild (1)

• cnode is a constant per node cost, Pchild is the probability of in-
tersecting a child and Cchild is the cost of intersecting a child.

The assumption of uniform ray direction is, in some cases, a rea-
sonable assumption. In the past, acceleration structures build was
an offline process. Acceleration structures were built once and then
potentially re-used for many different camera positions. This sce-
nario provided a wide range of potential rays to be traced in a given
acceleration structure. More accurate assumptions however, would
provide a higher quality structure. Havran studied this problem in
detail, providing many modifications to the standard SAM in or-
der to address these issues [4]. However, at the time, per-frame
rebuild was considered to be too slow to be practical and many of

the proposed improvements have not been used for general purpose
ray-tracing.

Recently, in order to support dynamic scenes, researchers have
successfully made acceleration structure build an online process
[16, 8, 7, 12]. Dynamic ray-tracing systems re-build or refit an ac-
celeration structure (or in some cases many structures) each frame
[17]. This per-frame rebuild allows for restrictions to be placed on
the acceleration structure such as a known camera or light location,
and we make use of this capability in this paper.

3 ADAPTIVE PERSPECTIVE SPACE ACCELERATION
STRUCTURES

With these motivations in mind, we propose using one adaptive per-
spective space acceleration structure for each camera or light in the
scene. Because the perspective grid works so well for eye and hard-
shadow rays, we will focus on depth of field and soft-shadow rays
here. The goal (which we demonstrate to be achievable) is for the
improvement in traversal efficiency to outweigh the extra cost of
building the extra acceleration structures.

As explained in our companion paper [6], building and traversing
acceleration structures in perspective space is no more complicated
than building and traversing acceleration structures in regular space.
The perspective transform has the important feature that it maps
lines to lines, thus mapping rays to rays and triangles to triangles.
Because of theses properties, an acceleration structure built in per-
spective space can be traversed by rays in perspective space using
all of the same algorithms that one would use in regular space. Even
ray-triangle intersection can be performed in perspective space, al-
though barycentric coordinates must be corrected prior to shading.

In this paper, we use a kd-tree in perspective space as our adap-
tive perspective space acceleration structure. In order to construct
a perspective space kd-tree, we first transform the scene geometry
into perspective space using the perspective transform:

x′ = x/z (2)
y′ = y/z (3)
z′ = −1/z (4)

In this case we use z′ = −1/z instead of z′ = 1/z because it pre-
serves ordering along the z axis and more importantly, because it
maintains the handedness of the coordinate system. Once the ge-
ometry is in perspective space, an acceleration structure may be
constructed using traditional means. In our case we construct a kd-
tree but the perspective transform may be used with any kind of
acceleration structure.

In order to traverse a ray through the perspective space acceler-
ation structure, the ray must first be transformed into perspective
space using the equations above. Once it has been properly trans-
formed, the ray may be traversed using any traditional means. This
includes the use of packets [18], frustum culling [14, 15], vertex
culling [13], etc.

In short, using the perspective transform to build specialized ac-
celeration structures is conceptually no more complicated than us-
ing an object space transform for object-local acceleration struc-
tures. Geometry must be transformed properly before the structure
is built and rays must be transformed properly before being tra-
versed. In the case of using perspective space, the benefit comes
from aligning the acceleration structure with the rays rather than
with the geometry.

One additional benefit of using specialized per cam-
era/light/frame acceleration structures is the ability to cull
back-facing polygons before inserting them into the acceleration
structure. Given an area light or a camera, it is easy to determine
which faces are back-facing (or front-facing in the case of shadows
[19]) to all of the rays from that light or camera. (Note: With an

area light or camera, this is a smaller set than the faces that are
back-facing to a single point.) Specifically, we cull all faces for
which a sphere bounding the light/camera aperture lies completely
behind the plane of the face. These faces will not be intersected
by rays and may be completely ignored by the build process. This
reduces build times in our results by approximately 50%.

4 THE PERSPECTIVE SINGULARITY

Although the perspective transform has many useful properties such
as mapping lines to lines, it has one challenging property that must
be dealt with. The perspective transform divides by z and thus has a
singularity at z = 0. This problem is well known in raster graphics
systems, and we use one of the standard solutions: a near-clip plane.
As will be evident from our build time results, this clipping process
is not expensive.

One should note that because of this singularity, perspective
space structures can only deal with half-spaces. To use perspec-
tive space structures for lights or cameras with a viewing angle
greater than π radians, it would be necessary to use multiple per-
spective space structures. A solution to this problem would be to
use six back to back structures. In raster graphics, this is known
as cube mapping [10]. In the case of perspective space accelera-
tion structures for ray-tracing, this increase in the number of struc-
tures should not affect build performance significantly because each
structure, on average, will contain only one sixth of the total geom-
etry.

5 THE PSAM

Although the traditional SAM is commonly used to build acceler-
ation structures in “regular” space, several factors make it less ap-
propriate for use in the construction of perspective space adaptive
acceleration structures.

The assumption of uniform incoming ray direction made by the
SAM allows the probability of intersecting a child node to be com-
puted as a ratio of node surface areas. These node surfaces are
usually axis aligned boxes, whose areas are inexpensive to com-
pute. To use this metric in perspective space, the node faces must
be transformed back to regular space before computing their sur-
faces areas. These transformed faces are in general not axis aligned
and their areas are thus more expensive to compute. Alternatively, if
we changed the assumption to be: “incoming ray directions are uni-
formly distributed in perspective space”, then we could use surface
areas computed in perspective space from axis-aligned rectangles.
However, the assumption of uniform incoming ray direction in per-
spective spaces is likely to be even less accurate than the assump-
tion of uniform incoming ray direction in regular space. Either way,
the assumption of uniform incoming ray distribution in any space
is unreasonable when the acceleration structure is used for just one
frame with one light or camera.

We opt for a first principles re-derivation of a heuristic for per-
spective space acceleration structures. First, we abandon the as-
sumption of a directionally uniform incoming ray distribution in
favor of a distribution more appropriate for cameras and area lights.
Second, we compute the probability of hitting a node in perspective
space.

Our new metric, which we will refer to as the perspective surface
area metric (PSAM) more accurately models the distribution of rays
that use a perspective space acceleration structure. The metric as-
sumes that ray origins (or destinations) have a uniform distribution
on the surface of an axis aligned quad (which will be referred to as
the aperture). The metric also assumes a uniform distribution of
ray directions leaving one side of the aperture. More specifically
we define a uniform directional distribution as meaning that if we
place a plane at a certain distance from the origin, the spacing of
ray intersections on the plane will be uniform. This distribution is

equivalent to the equal spacing of pixel centers on an image plane.
Figure 2 illustrates this distribution.

The assumption that ray origins are uniformly distributed is al-
most always accurate given common sampling patterns associated
with Monte-Carlo integration. The assumption that outgoing ray
directions are uniformly distributed is somewhat less accurate, but
we use it anyway for two reasons. First, it is impossible (or at least
very difficult) to know the distribution of secondary rays within a
scene without first firing primary rays and collecting statistics on
the actual distribution. We do not propose solving this problem
here. The second, more comforting reason is that the probabilities
computed by the PSAM using this assumption are ratios. Given
that we are computing ratios, as long as the distribution of rays in
the direction of the parent box is locally close to uniform the effects
of ray density will cancel and the computed ratios will be close to
accurate.

Before we begin the derivation of the PSAM, we would like to
outline some properties that it intuitively should have. First, if the
area of the light is zero (i.e. the light is a point light) then the proba-
bility of a ray striking a box should be proportional to the projected
area of the front rectangle of the box. That is, the probability should
be proportional to the area of the box when projected into two-
space. Second, moving twice as far away from a light should have
the same effect as shrinking the light by one half in each dimension
(following the rule that asymptotically, light falls off quadratically
with increasing distance). In other words, area lights should appear
smaller the farther away from them you get. In the limit, partitions
that are far from an area light should be the same as partitions that
are from a point light.

6 DERIVATION OF THE PSAH
For our new cost metric, we will use the same form as the traditional
SAM:

costtraversal = cnode + ∑
children

PchildCchild (5)

The cost estimates will remain the same, simply the number of
objects overlapping each child. This section will be dedicated to
deriving probability terms using the assumptions described earlier.
The probability of a ray striking a child box given that it struck the
parent box is the ratio of the number of rays (out of all possible
rays) that strike the child over the number of rays that strike the
parent. The number of rays that strike a box may be formulated as
an integral over all rays of the Boolean intersection function for a
ray/box pair. The probability of striking a child box is the ratio of
these integrals.

p(child) =

∫
Rays hit(child,ray)dray∫

Rays hit(parent,ray)dray
(6)

In order to more accurately define these integrals, we will make
formal several of our assumptions about the distribution of rays that
use this acceleration structure. Rays are assumed to launch from a
rectangular aperture A and are assumed to have a uniform distribu-
tion of slope. Rays will take the following form:

ray := (o,d) (7)
o ∈ [−Ax,Ax]× [−Ay,Ay]× [0] (8)
d ∈ (−∞,∞)× (−∞,∞)× [1] (9)

Where o is the ray origin taken from a uniform distribution on
a rectangle at z = 0 and d is the ray direction, taken from a uni-
form distribution of intersections with a plane at z = 1. See figure 2
for a two dimensional cross section of this distribution in direction.

Figure 2: A cross section of rays with a “uniform” distribution in direc-
tion (by our assumptions). These rays are not uniformly distributed
in angle, but this is the common distribution for eye rays. This style
of uniformity also translates into perspective space nicely.

Figure 3: Given a fixed direction (indicated) the shadowed region is
the set of origins that will intersect the box. The area of the shadowed
region is computed in (26) - (28).

Figure 4: A cross section of a box being projected onto a plane. This
figure is designed to give intuition into equation (27). The planes of
the box perpendicular to the z = 0 plane have areas scaled by the
tangent of the direction vector.

However, since we are computing our cost metric in perspective
space, we must transform our rays into perspective space. First, we
take the equations defining a ray in world space:

x = dxt +ox (10)
y = dxt +oy (11)
z = t (12)

Then we transform these equations into perspective space:

x′ = x/z = (dxt +ox)/t (13)
y′ = y/z = (dyt +oy)/t (14)

z′ = −1/z = −1/t (15)

By defining a new parametric variable for the ray, t ′ = 1/t, we
can rewrite the perspective equations as:

x′ = oxt ′ +dx (16)
y′ = oyt ′ +dy (17)

z′ = −t ′ (18)

Notice that the roles of values for o and d have been reversed in
perspective space. By introducing new variables o′ = d and d′ = o
representing the ray origin and direction in perspective space we
get:

x′ = d′
x′ t

′ +o′x′ (19)

y′ = d′
y′ t

′ +o′y′ (20)

z′ = −t ′ (21)

And from the swap of o and d and their initial distributions we
also obtain the following distribution for o′ and d′:

ray′ := (o′,d′) (22)
o′ ∈ (−∞,∞)× (−∞,∞)× [0] (23)
d′ ∈ [−Ax,Ax]× [−Ay,Ay]× [−1] (24)

A common confusion regarding the above transform is that many
readers think about transforming an origin and a direction sepa-
rately. This leads to questions regarding limits or infinity because
the origin in “normal” space has oz = 0. Rather, we would rec-
ommend thinking of this as the transform of a line-equation when
following our math. We may now more accurately specify the in-
tersection integral over all rays in perspective space:

∫ Ax

−Ax

∫ Ay

−Ay

∫ ∞

−∞

∫ ∞

−∞
hit(box′,ray′)do′y′do′x′dd′

y′dd′
x′ (25)

In perspective space, if we fix a ray direction (from [−Ax,Ax]×
[−Ay,Ay]× [1]) and assume a uniform distribution of origins, the
number of rays that strike a box is equal to the area of that box
projected onto the z′ = 0 plane in the direction of the ray. See figure
3. This area may be computed by summing the projected areas of
the three visible faces from the fixed direction. See Figure 4 for
reference with regard to the following equations. Given a fixed ray
direction direction we have:

area =
∫ ∞

−∞

∫ ∞

−∞
hit(box′,ray′)do′y′do′x′ (26)

= ∆x′∆y′+| tanθy′z′ |∆x′∆z′+| tanθx′z′ |∆y′∆z′ (27)

= ∆x′∆y′ + |d′
y′ |∆x′∆z′ + |d′

x′ |∆y′∆z′ (28)

Where ∆x′, ∆y′ and ∆z′ are the dimensions of an axis aligned
box in perspective space. Substituting this formula into the original
integral we get:

∫ Ax

−Ax

∫ Ay

−Ay

(
∆x′∆y′ + |d′

y′ |∆x′∆z′ + |d′
x′ |∆y′∆z′

)
dd′

y′dd′
x′ (29)

= 4
∫ Ax

0

∫ Ay

0

(
∆x′∆y′+d′

y′∆x′∆z′+d′
x′∆y′∆z′

)
dd′

y′dd′
x′ (30)

= 4
∫ Ax

0

(
Ay∆x′∆y′+

A2
y

2
∆x′∆z′+Ayd′

x′∆y′∆z′
)
dd′

x′ (31)

= 4
(
AxAy∆x′∆y′ +

AxA2
y

2
∆x′∆z′ +

A2
xAy

2
∆y′∆z′

)
(32)

= AxAy(∆x′∆y′ +
Ay

2
∆x′∆z′ +

Ax

2
∆y′∆z′) (33)

Because probability is a ratio of these integrals, the division will
cause common factors to cancel. Thus we may scale the computed
integral to:

G(box,A) = ∆x′∆y′ +
Ay

2
∆x′∆z′ +

Ax

2
∆y′∆z′ (34)

This expression is similar to the traditional SAM except that it
contains scaled aperture terms. With it we may compute the proba-
bility of striking each child box and thus the cost of a partition:

costtraversal = cnode + ∑
children

G(child,A)
G(parent,A)

Cchild (35)

With a solution in hand, let’s look back at the intuitive properties
we required in an appropriate cost. First, if the area of the aperture
is zero (e.g. a light is a point light) than the probability of striking a
box should be proportional to the projected area of the front rectan-
gle of the box. Second, if we move twice as far away from a light,
it should have the same effect as shrinking the light by one half in
each dimension. Both properties are clearly provided by the solu-
tion formula. Setting A = (0,0) removes the ∆z′ terms and yields
∆x′∆y′. Increasing znear and z f ar by a factor of two decreases z′near
and z′f ar by a factor of two and thus ∆z′ by a factor of two. Since
∆z′ always occurs multiplied with Ax or Ay, this has the same effect
as dividing A by two. This implies that parts of the scene with large
z values will not choose splits in z′ nearly as often as those in x and
y because those terms will dominate the cost function.

This cost function has the useful practical properties that it is
simple to compute, is linear in x′, y′ and z′ and requires very little
algorithmic change from original SAM to adopt.

7 IMPLEMENTATION AND RESULTS

With an appropriate cost metric in hand, we implemented a ray-
tracing system to evaluate the effectiveness of perspective space
acceleration structures. The ray tracer is a simple, SIMD(4)-wide
packet ray-tracer [18] using a kd-tree as the acceleration structure.
The primary goal of the implementation is to determine the effec-
tiveness of building and using perspective space acceleration struc-
tures versus “regular”-space structures. Great care was taken to
ensure that identical build code (except for heuristic evaluation),
traversal code and intersection code was used in both regular and
perspective space for the fairest comparison.

Geometry is transformed into perspective space and clipped dur-
ing the frame-setup phase, before being handed to the build al-
gorithm for the acceleration structure. This frame setup cost is

counted in the Build Time column in Table 1. Rays are transformed
into perspective space before being traversed. Shadow rays that use
a different perspective space than primary rays are transformed be-
tween the perspective spaces in a similar method to that used in
Z-buffer shadow mapping.

Our results in Table 1 and Table 2 compare the performance of
the regular kd-tree versus a perspective kd-tree in two common
scenes, bunny69k and fairy-forest from the viewpoints illustrated
in Figure 1. Results are provided for eye rays, hard shadow rays,
soft shadow rays, and depth-of-field eye rays. Figure 5 provides
details about the soft shadow and depth-of-field images. Back-
face culling in the perspective space structure reduces build time
by approximately 50% in each perspective case. On average, the
perspective space acceleration structures, along with the PSAH re-
duce render times by 20-40% over the traditional SAH and regular
space structures. The results demonstrate that even for such a sim-
ple case as eye rays, the improvement in trace performance makes
up for the additional build time proving end-to-end runtime perfor-
mance in perspective space similar to render time (excluding build)
in regular space. More noticeably, the perspective space accelera-
tion structures reduce the number of intersection tests by 40% on
average. This result demonstrates that the perspective-space accel-
eration structure is of much higher “quality”, i.e. it reduces the
number of intersection tests performed.

When the number of rays traced is large, perspective space ac-
celeration structures more than compensate for their build cost by
improving trace performance. Thus, each area light in a scene
should use its own perspective based acceleration structure in or-
der to maximize overall system performance. Memory concerns
related to having multiple acceleration structures and large scenes
may be addressed by only maintaining one such structure at a time
as is described in [6].

In the second table, we compare the performance of different
build heuristics in perspective space. The table demonstrates that
the PSAM is a significantly more effective cost-estimation metric
that either the traditional SAM in perspective space or median split
of longest axis in perspective space.

8 CONCLUSIONS AND FUTURE WORK

We have presented an approach that accelerates the tracing of near-
common-origin rays (such soft shadows and depth of field effects).
The approach uses an adaptive acceleration structure defined in a
perspective-transformed space. We have shown that the cost of
building multiple perspective-transformed acceleration structures is
more than offset by reduced traversal and intersection costs. This
tradeoff will be especially evident in extremely high quality ren-
derings with vastly more time spend in traversal. Additionally, we
have derived a novel cost metric for building heuristic based accel-
eration structures in perspective space and have shown this metric
to be more effective in practice.

A key feature of the perspective transform is that allows us to
continue using all of our current technology. Most other ray-tracing
optimizations are agnostic to the space that the rays are being tra-
versed in, and since the perspective transform maps lines to lines,
all of the standard high-performance techniques still apply. Fu-
ture work includes implementing BVHs in perspective space, wider
packets and interval arithmetic, frustum culling, mail-boxing and a
host of other ray-tracing optimizations in perspective space.

An additional interesting piece of future work is to incorporate
focal depth into the PSAM. At the moment, the assumptions about
the distribution of ray directions are more accurate for area lights
than for depth of field rays, which converge at some depth.

ACKNOWLEDGEMENTS

This work was supported by the Intel Foundation Fellowship.

Fairy Forest Scene
Acceleration structure Build Time Intersections kd-tree steps Render Time Total Time

Eye Rays
(1) traditional / SAH sort 7.21 s 9.369 M 23.15 M 1.16 s 8.37 s
(2) traditional / SAH scan 0.76 s 9.530 M 24.77 M 1.22 s 1.99 s
(3) perspective / PSAM scan 0.58 s 5.482 M 14.49 M 0.71 s 1.29 s
ratio: (3)/(2) 75% 58% 58% 58% 65%

Depth of Field x16
(1) traditional / SAH sort 7.24 s 148.0 M 369.6 M 18.5 s 25.8 s
(2) traditional / SAH scan 0.78 s 150.6 M 395.5 M 19.1 s 19.9 s
(3) perspective / PSAM scan 0.58 s 92.60 M 314.7 M 14.5 s 15.1 s
ratio: (3)/(2) 74% 61% 80% 76% 76%

Hard Shadows
(1) traditional / SAH sort 7.28 s 21.05 M 46.13 M 2.13 s 9.41 s
(2) traditional / SAH scan 0.80 s 21.39 M 49.78 M 2.34 s 3.15 s
(3) perspective / PSAM scan 1.15 s 12.29 M 39.33 M 1.86 s 3.01 s
ratio: (3)/(2) 143% 57% 80% 79% 96%

Soft Shadows x16
(1) traditional / SAH sort 7.83 s 346.4 M 558.9 M 35.5 s 43.3 s
(2) traditional / SAH scan 0.79 s 347.7 M 601.6 M 34.4 s 35.3 s
(3) perspective / PSAM scan 1.19 s 204.7 M 540.4 M 24.3 s 25.5 s
ratio: (3)/(2) 138% 59% 90% 71% 72%

Bunny69K Scene
Acceleration structure Build Time Intersections kd-tree steps Render Time Total Time

Eye Rays
(1) traditional / SAH sort 2.17 s 2.838 M 10.43 M 0.492 s 2.62 s
(2) traditional / SAH scan 0.26 s 2.888 M 11.10 M 0.532 s 0.79 s
(3) perspective / PSAM scan 0.15 s 1.515 M 5.981 M 0.272 s 0.43 s
ratio (3)/(2) 59% 52% 54% 51% 54%

Depth of Field x16
(1) traditional / SAH sort 2.09 s 81.19 M 255.1 M 12.7 s 14.8 s
(2) traditional / SAH scan 0.25 s 83.15 M 272.4 M 13.3 s 13.5 s
(3) perspective / PSAM scan 0.15 s 46.29 M 141.1 M 7.8 s 8.0 s
ratio: (3)/(2) 62% 56% 52% 66% 59%

Table 1: Comparison of performance: perspective-space kd-tree vs. traditional world-space kd-tree. “traditional / SAH sort” is a traditional
kd-tree built using the SAH with sort-based selection at every step. “traditional / SAH scan” is a traditional kd-tree built using the SAH with a
scan-based selection at every step [7]. “perspective / PSAM scan” is a perspective-space kd-tree built using this paper’s perspective-space cost
metric with a scan-based selection at every step. All results are at 1920x1200 resolution on a single core of a mobile 2.2 Ghz Intel Core 2 Duo
(Merom). ratio is the ratio of the perspective-space results to the traditional scan-based results. Build time results include all build times (if more
than one structure is used). All acceleration structures specialized to a light or camera use face culling.

Fairy Forest Scene
Build heuristic Build Time Intersections kd-tree steps Render Time Total Time

Eye Rays
Median split 0.209 s 63.85 M 48.76 M 4.16 s 4.38 s
SAH 0.449 s 11.46 M 31.64 M 1.43 s 1.88 s
PSAM 0.581 s 5.482 M 14.49 M 0.71 s 1.29 s

Depth of Field x16
Median split 0.208 s 999.1 M 794.4 M 65.8 s 66.0 s
SAH 0.472 s 177.2 M 519.5 M 23.3 s 23.8 s
PSAM 0.580 s 92.60 M 314.7 M 14.5 s 15.1 s

Table 2: Comparison of different build heuristics for a perspective-space kd-tree. Median-split uses the median split of the longest axis. SAH uses
the traditional SAM, but in perspective space. PSAM uses this paper’s new perspective-space PSAM. All results are at 1920x1200 resolution on
a single core of a mobile 2.2 Ghz Intel Core 2 Duo (Merom).

Figure 5: Close-ups of depth of field and soft-shadow images. Top:
Fairy Forest scene with depth-of-field. Middle: Fairy Forest scene
with soft shadows. Bottom: Bunny scene with depth-of-field. Details
of the soft shadow and depth-of-field rays are as follows. First, bunny
is approximately 0.15 x 0.15 x 0.12 units in size and Fairy Forest is
approximately 6.3 x 1.6 x 6.3 units in size. Fairy Forest with depth-
of-field uses a focal depth of 0.91 and an aperture “radius” of 0.01.
Fairy Forest with soft shadows has a light with “radius” 0.1. Bunny
with depth-of-field uses a focal depth of 1.98 and an aperture “radius”
of 0.1 (the bunny is viewed at a distance of 2.0). Since all apertures
are square, a “radius” of x is in fact a quad of size 2x×2x.

REFERENCES

[1] J. Bigler, A. Stephens, and S. G. Parker. Design for parallel interactive
ray tracing systems. In IEEE Symp. on Interactive Ray Tracing 2006,
pages 187–196, Sept. 2006.

[2] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R. Mark.
Razor: An architecture for dynamic multiresolution ray tracing. Tech-
nical report, University of Texas at Austin Dep. of Comp. Science,
2007. Conditionally accepted to ACM Transactions on Graphics.

[3] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies
for ray tracing. IEEE Computer Graphics and Applications, 7(5):14–
20, 1987.

[4] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech
Technical University, Nov. 2000.

[5] V. Havran and J. Bittner. On improving KD trees for ray shooting. In
Proceedings of WSCG, pages 209–216, 2002.

[6] W. Hunt and B. Mark. Ray-specialized acceleration structures for ray
tracing. In IEEE Symposium on Interactive Ray Tracing 2008. IEEE,
2008.

[7] W. Hunt, W. Mark, and G. Stoll. Fast kd-tree construction with an
adaptive error-bounded heuristic. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 81–88, 2006.

[8] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. RT-DEFORM:
Interactive ray tracing of dynamic scenes using BVHs. In Proceedings
of the 2006 IEEE Symposium on Interactive Ray Tracing, pages 39–
45, 2006.

[9] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using
space subdivision. Visual Computer, 6(6):153–65, 1990.

[10] G. S. Miller and C. R. Hoffman. Illumination and reflection maps:
Simulated objects in simulated and real environments, 1984.

[11] M. Pharr and G. Humpreys. Physically Based Rendering: From The-
ory to Implementation. Morgan Kaufmann, 2004.

[12] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek. Experiences with
streaming construction of SAH kd-trees. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing, 2006.

[13] A. Reshetov. Faster ray packets - triangle intersection through vertex
culling. In 2007 IEEE Symposium on Interactive Ray Tracing, pages
105–112. IEEE, Sept. 2007.

[14] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing al-
gorithm. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages
1176–1185, New York, NY, USA, 2005. ACM.

[15] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes
using dynamic bounding volume hierarchies. ACM Transactions on
Graphics, 26(1):1–18, 2007.

[16] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing
animated scenes using coherent grid traversal. ACM Transactions on
Graphics, 25(3):485–493, 2006. (Proceedings of ACM SIGGRAPH).

[17] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G.
Parker, and P. Shirley. State of the art in ray tracing animated scenes.
In Eurographics 2007 State of the Art Reports. Eurographics Associ-
ation, 2007.

[18] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive rendering
with coherent ray tracing. In Proc. of Eurographics 2001, 2001.

[19] Y. Wang and S. Molnar. Second-depth shadow mapping. Technical
report, Chapel Hill, NC, USA, 1994.

